Problem involving Mobius function in \mathbb{C}.

https://www.linkedin.com/feed/update/urn:li:activity:6520090253649416192
This continued complex number fraction is periodical and its values are $(1-i) / 2,2 /(1+i), 1,1 /(1+i)$. Do you another complex number continued fraction with similar property ?
$f_{n}(z)=\frac{1}{1+f_{n-1}(z)}$
if $f_{n}(z)$ does not converge then $\frac{1}{1+f_{n-1}(z)}$ will be periodic
Example $z_{n+1}=f\left(z_{n}\right)$, where $f(z):=\frac{1}{i+z}$ create periodic sequence if $z_{1}:=\frac{1}{1+i}$ then $z_{2}=f\left(z_{1}\right)=\frac{1}{i+\frac{1}{1+i}}=1-i, z_{3}=f\left(z_{2}\right)=\frac{1}{i+1-i}=1, z_{4}=f\left(z_{3}\right)=\frac{1}{i+1}=z_{1}$.
$z_{n+1}=\frac{1}{i+z_{n}} \Leftrightarrow i z_{n+1}=\frac{i^{2}}{i\left(i+z_{n}\right)} \Leftrightarrow i z_{n+1}=-\frac{1}{i z_{n}-1} \Leftrightarrow i z_{n+1}-1=-\frac{1}{i z_{n}-1}-1$.

Solution by Arkady Alt, San Jose ,California, USA.

One question was related with the sequence $\left(z_{n}\right)$ defined by $z_{n}=h\left(z_{n-1}\right), n \in \mathbb{N}$, where $h(z):=\frac{1}{1+z}$ and $z_{0}=z \in \mathbb{C}$.
Let $h_{n+1}:=h \circ h_{n}, n \in \mathbb{N}$, where $h_{1}=h$ and let $H_{n}:=\left(\begin{array}{ll}h_{11} & h_{12} \\ h_{21} & h_{22}\end{array}\right)$ is matrix of Mobius function $h_{n}(z)=\frac{h_{11} z+h_{12}}{h_{21} z+h_{22}}$. In particular, $H_{1}=H=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$ is matrix of $h(z)$ Noting that $H_{n}=H^{n}$ and $H=\left(\begin{array}{ll}f_{0} & f_{1} \\ f_{1} & f_{2}\end{array}\right)$, where f_{n} is n-th Fibonacci number defined by $f_{n+1}=f_{n}+f_{n-1}, n \in \mathbb{N}$ with initial conditions $f_{0}=0, f_{1}=1$, we obtain $H^{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{2}=\left(\begin{array}{ll}f_{1} & f_{2} \\ f_{2} & f_{3}\end{array}\right), H^{3}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{3}=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)=\left(\begin{array}{ll}f_{2} & f_{3} \\ f_{3} & f_{4}\end{array}\right)$
Supposition $H^{n}=\left(\begin{array}{cc}f_{n-1} & f_{n} \\ f_{n} & f_{n+1}\end{array}\right)$ implies $H^{n+1}=\left(\begin{array}{cc}f_{n-1} & f_{n} \\ f_{n} & f_{n+1}\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)=$ $\left(\begin{array}{cc}f_{n} & f_{n}+f_{n-1} \\ f_{n+1} & f_{n}+f_{n+1}\end{array}\right)=\left(\begin{array}{cc}f_{n} & f_{n+1} \\ f_{n+1} & f_{n+2}\end{array}\right)$.
Thus, by Math Induction prove that $h_{n}(z)=\frac{z f_{n-1}+f_{n}}{z f_{n}+f_{n+1}}$ and $h_{n}(z)=z \Leftrightarrow \frac{z f_{n-1}+f_{n}}{z f_{n}+f_{n+1}}=z \Leftrightarrow z f_{n-1}+f_{n}=z^{2} f_{n}+z f_{n+1} \Leftrightarrow$
$z^{2} f_{n}+z\left(f_{n+1}-f_{n-1}\right)-f_{n}=0 \Leftrightarrow z^{2} f_{n}+z f_{n}-f_{n}=0 \Leftrightarrow z^{2}+z-1 \Leftrightarrow h(z)=z \Leftrightarrow$ $z=\frac{\sqrt{5}-1}{2}$ or $z=\frac{-\sqrt{5}-1}{2}$.
So, $h(z)$ has n-fixed point only if $n=1$ and these points are $z=\frac{\sqrt{5}-1}{2}$ or
$z=\frac{-\sqrt{5}-1}{2}$.
that is the sequence $\left(z_{n}\right)$, where $z_{n}=\frac{1}{1+z_{n-1}}, n \in \mathbb{N}$ is a constant sequence if $z_{0} \in\left\{\frac{\sqrt{5}-1}{2}, \frac{-\sqrt{5}-1}{2}\right\}$ and is non periodic if $z_{0} \notin\left\{\frac{\sqrt{5}-1}{2}, \frac{-\sqrt{5}-1}{2}\right\}$.
Another question was related to the sequence $\left(z_{n}\right)$ defined by
$z_{n+1}=h\left(z_{n}\right), n \in \mathbb{N}$ where $h(z):=\frac{1}{i+z}, z_{1}=z \in \mathbb{C}$
and was accompanied with example of 3-periodic sequence
$\frac{1-i}{2}, \frac{2}{1+i}, 1, \frac{1}{1+i}, \ldots,\left(\right.$ here $\frac{1}{1+i}=\frac{1-i}{2}$).
In fact the sequence $\left(z_{n}\right)$ defined by $z_{n+1}=\frac{1}{i+z_{n}}, n \in \mathbb{N}$ and $z_{1}=z$ is
3-periodic for any $z \in \mathbb{C} \backslash\{-i, 0\}$.
Indeed, since $h_{2}(z)=\frac{1}{i+\frac{1}{i+z}}=\frac{1-i z}{z}, h_{3}(z)=\frac{1}{i+\frac{1-i z}{z}}=z$ then any $z \in \mathbb{C} \backslash\{-i, 0\}$
is fixed point of $h_{3}(z)$, that is $h_{3}(z)=z$ for any $z \in \mathbb{C} \backslash\{-i, 0\}$. Or by the other words sequence $\left(z_{n}\right)$ is 3 -periodic.

* For any Mobius function $h_{n}(z)=\frac{h_{11} z+h_{12}}{h_{21} z+h_{22}}$ if $H=\left(\begin{array}{ll}h_{11} & h_{12} \\ h_{21} & h_{22}\end{array}\right)$ is matrix of $h_{n}(z)$ then for any $c \in \mathbb{C} \backslash\{0\}$ matrix $c H=\left(\begin{array}{cc}c h_{11} & c h_{12} \\ c h_{21} & c h_{22}\end{array}\right)$ is matrix of $h_{n}(z)$ as well.

